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Abstract

The extended stochastic central difference (ESCD) method is proposed as a viable alternative for
computing linear responses of discretized multi-degrees-of-freedom (mdof) systems under narrow band
stationary and nonstationary random disturbances. The method provides a means of controlling the center
frequencies and bandwidths of narrow band stationary and nonstationary random excitation processes. It
is suitable for larger-scale random response analysis of complicated structures idealized by the finite
element method. Its additional important feature is that application of normal mode or complex normal
mode analysis or direct numerical integration algorithms such as the fourth-order Runge-Kutta scheme is
not required. Examples, including one of flow-induced vibration of a pipe containing a moving fluid are
included to demonstrate: (1) the capability of the proposed method and difference between responses of
discretized systems under narrow band and wide band random excitations, and (2) its accuracy and
efficiency by way of comparison to the Monte Carlo simulation data. Generalization of the ESCD method
for computation of responses of nonlinear mdof systems is presented in a companion paper.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Random motion is a very common phenomenon in nature. In engineering design and
manufacturing, typical loadings used or that occurred in practice are random in nature. It has
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been almost five decades since the milestone conference on random vibration held at the
Massachusetts Institute of Technology in 1950. During this time, many techniques and
methods have been introduced and developed [1,2], among which the stochastic central
difference (SCD) method [1] and the stochastic version of the Newmark family of algorithms
[3] have been proved to have more advantageous features over the others. The advantages
are low computational cost, no restriction on the type of damping in the system, being
applicable in conjunction with the finite element analysis (FEA) and, therefore, that it can be
applied to complicated structures where analytical solution, employing the normal mode or
complex normal mode in the cases involving nonproportional dampings or direct numerical
integration algorithm such as the fourth-order Runge—Kutta scheme may prove to be relatively
much more expensive.

In the analysis, the types of random vibration problems dealt with to-date have almost
exclusively been treated as wide band random processes. While wide band random processes are
good approximations to many physical phenomena, there is a wide variety of physical phenomena
that have to be categorized as narrow band random processes. For example, flow-induced
forces on heat exchanger tubes could be represented by narrow band stationary random
processes. A literature survey shows that investigations of systems under narrow band
random excitations seem to be relatively limited and have been recommended for further
effort [4]. Some of the previous investigations [5,6] are based on pseudo-sinusoidal representation
of the narrow band random excitation and have not considered the bandwidth of the excitation as
a parameter in their analyses. Tagata [7] suggests that the effects of bandwidth of excitation
are very critical and that engineering designs would have to be very conservative and
expensive if bandwidth as an important parameter is neglected. Among publications available
in the literature, the investigations with narrow band excitations have mainly focused on
stationary processes [5—8].

Consequently, the purpose of the investigation reported here was to develop a method that
provides the freedom of controlling the center frequencies and bandwidths of narrow band
stationary and nonstationary random excitation processes, and to be applicable with the FEA.
The objectives of the investigation, however, included the followings. First, a method was to be
developed for the determination of linear and nonlinear responses of multi-degrees-of-freedom
(mdof) systems under narrow band stationary and nonstationary random excitations. This
method was applicable to wide band and narrow band stationary and nonstationary Gaussian
random excitation processes. Second, applications of the method are made to engineering systems
discretized by the finite element method (FEM). Third, verification and comparison of the
obtained results are made to those computed by the Monte Carlo simulation (MCS).

In this paper only responses of linear systems are considered, while responses of nonlinear
systems are to be presented in a companion paper [9]. The organization of this paper is as follows.
Section 2 introduces the extended stochastic central difference (ESCD) method. For brevity, only
representative results are presented in Sections 3—5. Section 3 includes results of a single-degree-
of-freedom (sdof) system. Section 4 deals with a beam structure discretized by the FEM.
Application of the method is made in Section 5 to the narrow band random response analysis of
flow-induced vibration of a pipe containing a moving medium. The latter system is also discretized
by the FEM and is an example of a system with nonproportional damping. Concluding remarks
are included in Section 6.
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2. Extended stochastic central difference method

This section is concerned with the derivation of recursive expressions of the ESCD method for
the computation of response statistics of single and mdof systems under wide band and narrow
band stationary and nonstationary random excitations. Important issues concerning time step size
and stiff systems are addressed.

2.1. Systems under narrow band random excitations

Consider a mdof system under narrow band random excitations, which are obtained from the
outputs of filters perturbed by modulated Gaussian white noise excitations. A schematic
representation of a sdof system is shown in Fig. 1. The governing matrix equations of motion are

Mif + Cof + Kyf = 1(1) = e(t)w(), (1)

M,Y +C, Y +K,Y =F, )

where My, Cr and K are the mass, damping and stiffness matrices of the filters while M, C, and
K are the mass, damping and stiffness matrices of the mdof system, respectively; f f and fare the
random acceleration, velocity and displacement vector of the filters and ¥, ¥ and Y are the
response acceleration, velocity and displacement vectors of the system; and e(?) is a time-
dependent deterministic modulating function vector. The zero-mean stationary Gaussian white
noise process w(¢) has the spectral density Sy. By changing the natural frequencies and damping
ratios of the filters and the spectral density of the Gaussian white noise excitation, a variety of
narrow band random processes, in the time domain, with different properties such as central
frequencies and bandwidths can be obtained.

By employing the same procedures introduced in Refs. [1,3], and after some algebraic
manipulation, one has the following recursive expressions accordingly:

Ry(s+ 1) = Ny, R,(s)N3, + N3, R,(s — NI + (A)* N1, Re(s)NT,
+ Ny Dy(s)N3, + N3, Dy () N1, + (A1)’ N2y G(s)N T,
+ (AD’N1,G(s)" Ny, + (A’ N3y H()N |,
+ (AD’N 1, H(s) NG, (3)
where
fo=f@©), Yo=Y, Gls)=(Y{]), Hs)=(Youf]),
Ri(s) = (ff])  Ry(s) = (YY),

r(t) f(t) Yt

—— Filter - System s

Fig. 1. Schematic model of narrow band random excitation.



436 Z. Chen, C.W.S. To | Journal of Sound and Vibration 287 (2005) 433—458

Dy(s) = (Y, Y )
= NoyRy(s — 1) + N3, D[ (s — 1) + (A1)’ N1, G (s — 1),

le = [My + %(AZ)Cy]_la N2y = le[zMy - (At)zKy]s N3y = le[%(At)Cy - My]-

Note that subscripts f'and y designate filter and system, respectively. Thus, the last three relations
can be applied to the filters by replacing the subscript y with f. For example,

Ny =[M;+3(AnC ™,

and so on. The time step index s is such that ¢, — z;, = At. In the foregoing, the superscript T
denotes the transpose of the matrix while the angular brackets designate the ensemble average or
mathematical expectation.

It may be appropriate to note that the major differences between the ESCD method for narrow
band excitations and the SCD method for wide band disturbances are the presences of the G(s)
and H(s) terms, which are the vehicles carrying frequencies and band width content from the
filters to system. Before applying Eq. (3), recursive relations of G(s) and H(s) have to be derived.
To this end one substitutes

Y(s) = (A1)’ N1, f (s — 1) + Noy Y(s — 1) + N3, Y(s — 2)
into the expression for G(s) so that
G(s) = (Y(s)f ()")
= ([(AD’ N1, f(s = 1)+ Noy Y(s — 1) + N3, Y(s — 21/ (9)")
= (A1’ N1, Ds(s)" + NoyH(s) + N3y (Y(s — 2)f (s)"). 4)

Similarly, one can substitute the recursive expression for f(s)" or simply f ST which can be shown
to be [1]

SO = (A0Pr(s = )INY /(s = DTN +/(s = DTN,
into the last term of Eq. (4) such that
(Y(s = 2f (5)") = (Y(s — DUAD*r(s — DN, +f(s — DINT, + £ (s = 2)TNT))
= H(s — )N}, + G(s — 2)N 7y, 5)

in which the fact that the term associated with (r(s)") is zero has been used. After combining Eqs.
(4) and (5), it leads to

G(s) = (A’ N1yDy(s)" + NoyH(s) + N3y H(s — DNJ, + N3, G(s — 2)N ;. (6)
A similar operation can be performed on the term H(s) in Eq. (3). Thus, one can show that
H(s) = (Y(s — 1)f (s)")
= (Y(s = D[(AD’r(s = D'NT, +f(s = D)'NY, + /(s —2)"NL])
= G(s — DNy, + (Y (s — 1)f (s = 2)") N1, (7)



Z. Chen, C.W.S. To | Journal of Sound and Vibration 287 (2005) 433—458 437

Upon application of Eq. (5) to the last term on the right-hand side (RHS) of Eq. (7) one has
(Y(s = D)f (s —2)") = ([(AD’N1yf (s = 2) + Ny Y(s = 2) + N3, Y(s — 3)] /(s — 2)")
= (At)*N1,Ry(s — 2) + N2y G(s — 2) + N3, H(s — 2). (®)
Then substituting Eq. (8) into Eq. (7) gives
H(s) = G(s — DNI, + (A’ N1, Ry(s — )N, + N2, G(s — 2)N,
+ N3yH(s — 2)N3;. ©))

In the above operations, the ensemble average of the narrow band random force vector has
been assumed to be zero. If the input to the system does not have a zero ensemble average, it can
be considered with due modification to the central difference equation and the remaining steps can
be found in Ref. [10].

2.2. Time step size and stiff systems under narrow band random excitations

The relation between the time step size Az and the natural frequency w of the system under wide
random excitations has been investigated by To and Liu [11]. It has been found that as the natural
frequency reduces to a small value the time step size Az approaches unity. The relation may be
written as

At = 0.83 —0.72log,p», 1.0<w<5.0, (10a)

At =1.0 —0.0530 — 0.120%, @<1.0. (10b)

Eq. (10) does not include a formula for w > 5.0 because if the angular natural frequency is higher
than 5.0, the time step size becomes too small to be computationally effective. When the angular
natural frequency is higher than 5.0, the time coordinate transformation introduced in Ref. [12]
should be used. Note that in Eq. (10) the time step size A¢ is in seconds and the angular frequency
o is in radian per second.

For stiff systems under wide band random excitations, a computational strategy known as the
time coordinate transformation (TCT) was employed in Ref. [12].

It is natural therefore to ask if Eq. (10) and the TCT remain valid and applicable in stiff systems
excited by narrow band stationary and nonstationary random disturbances. A detailed parametric
study was conducted during the investigation. It was observed that, indeed, the relation for the
time step size defined by Eq. (10) and TCT for stiff systems are applicable to cases involving
narrow band stationary and nonstationary random excitations.

In closing, it suffices to say that the significance of the TCT is such that very stiff systems can
now be dealt with by using the ESCD method. Without the TCT the time step sizes for stiff
systems can often lead to computational instability or render determination of recursive responses
impossible.

2.3. Recursive narrow band random force vector

Although the center frequency and bandwidth of the filter response can be adjusted by changing
the natural frequency and damping ratio of the filter, the amplitude and the shape of amplitude
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for nonstationary response cannot be conveniently and simply controlled without further
modification. Thus, it is imperative to develop a technique of providing narrow band random
forces which can be conveniently controlled.

To begin with, one makes use of Eq. (3) of Ref. [12] for the filter. It is understood that if the
system parameters of the filter, M;, C; and K, are constant the recursive covariance matrix of
responses, R(s+ 1), can only change with the variation of the excitation matrix B(s) = 2nSy
e(s)e(s)T. In turn, it can only change with the envelope function vector e(s) and spectral density S
of the Gaussian white noise excitation. The goal now is to find an envelope function vector e(s),
which can produce a desired covariance matrix Ry(s). In fact, there is a unique B(s) corresponding
to a desired response of the filter Ry(s) because Eq. (3) of Ref. [12] is linear. Examining the latter
equation carefully, one could find that the envelope function vector e(s) does not have to be
determined because it is the resulting narrow band random vector process from the filter, that is
required for the system rather than the Gaussian white noise input to the filter. In other words, the
envelope function vector of interest is associated with the narrow band random vector process
from the filter. Thus, the envelope function vector of the covariance of the narrow band random
vector process from the filter is desired. To do this, let

Ry(s) = [er(s)ef ()], (11)

where Ry(s) and es(s) are the response covariance and envelope function vector of the narrow
band random processes of the filter while / is a constant.

By inspection of Eq. (11) itself, it seems that the effect of frequency and bandwidth, therefore
damping ratio, has been lost in the process because it does not include Ny, Nos and N3y which
contain features of the filter. However, upon close examination one finds that the characteristics
of the filter are indeed retained in G(s) and H(s) which carry the frequency and bandwidth
characters into the system responses. Thus, the recursive relation representing the narrow band
random vector process are

Ry(s+ 1) = [es(s + Dej (s + DI, (12)

Df(s) = N3fo(S -+ szRf(S -1 (13)

which are the covariance expressions of the input forces to the system.

By applying different envelope functions es(s), constant /, the natural frequencies of the filters
and the ratios of damping to mass, a variety of different shapes, spectral densities, center
frequencies and band widths of the narrow band random processes from the filters can be
obtained. This is a unique and efficient feature of the presently proposed ESCD method. Note
that to provide a similar feature in MCS is much more difficult, if not impossible. With this
feature, the ESCD method can be applied to the analysis of systems under narrow band random
excitations.

3. Single degree of freedom systems

For applications of the ESCD method, the simplest case is a sdof system. In this section,
responses of such a system under narrow band stationary and nonstationary random excitations
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are obtained using the ESCD method. Data obtained by the MCS for some representative cases
are included for direct comparison.

Analytical solution of the response of a linear sdof system excited by a narrow band stationary
random excitation has been presented in Ref. [13], for example. However, an exact analytical
solution of the same system under narrow band nonstationary random excitation seems to be
unavailable at the present time. Therefore, the current phase of the investigation reported in this
section has three main objectives. Firstly, the results for the system under narrow band stationary
random excitation obtained by the ESCD method are verified by the analytical solution [13] and
MCS data. The relationships between the time step sizes and the natural frequencies of the filter
and system are established. The effect of damping ratio of the filter on the time step is evaluated.
Secondly, the issue of interpolation of the input to the system, that is the output from the filter is
examined. Thirdly, comparisons are made of responses of systems under narrow band and wide
band nonstationary random excitations. The above three main objectives are pursued in the
following subsections.

3.1. Relationship between time step size and natural frequency

Tables 1 and 2 contain results of some representative systems under narrow band stationary
random excitations. Note that the subscripts f and s in the tables refer to the filter and system,
respectively. Results for the study of the effect of parameters of filters on the time step size of the
system are presented in Table 1. The parameters which were kept constant are as follows: M, =
1.0, K, = 1.0, C, =0.0246875, My = 1.0, Cr = 0.029625 and the spectral density of the Gaussian
white noise applied to the filter, Sy = 1.0, such that the variance of the discrete white noise process
is (Ww?(0)) = 2n. From this table, it is clear that the natural frequency of the filter does not affect
the time step size of the system and that the time step size of the system agrees with Eq. (10). It is
also shown in this table that the results computed by the ESCD method and denoted by SCD

Table 1

Effect of filter parameters on time step size

oy s Aty At Variance of response (exact) Variance of response (SCD)
0.50 1.0 0.945 0.83 61.1 60.8
0.71 1.0 0.910 0.83 336.6 336.2
0.87 1.0 0.860 0.83 2322.7 2322.7
1.00 1.0 0.830 0.83 79,146.0 79,262.0
1.12 1.0 0.800 0.83 5040.7 5027.0
1.23 1.0 0.770 0.83 1757.0 1739.0
1.42 1.0 0.733 0.83 718.0 718.1
2.00 1.0 0.613 0.83 273.2 273.0
3.00 1.0 0.480 0.83 175.9 176.0
4.00 1.0 0.390 0.83 152.3 1534
5.00 1.0 0.328 0.83 142.7 142.7
10.0 1.0 0.181 0.83 130.9 131.5

20.0 1.0 0.095 0.83 128.2 127.1
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Table 2

Effect of natural frequency of system on time step size

M,  wy Aty Variance of response (exact)  Variance of response (SCD)  Variance of response (MCS)

1.0 0.500  0.935 733.8 733.2 723
0.707  0.905 546.0 542.0 550
0.820 0.875 339.0 339.0 345
1.00 0.831 718.4 716.7 700
1.414  0.721  79,117.0 79,967.0 78,500
2.00 0.610 84.8 83.5 83
3.00 0.486 5.5 5.5 5.7
4.00 0.398 1.2 1.3 1.2

0.1 10.0 0.182 22 2.3 1.9

20.0 0.094 0.13 0.15 0.12

wr = 1414, M; = 1.0, C; = 0.029625, K, = 2.0, C, = 0.0246875

(henceforth, SCD in the tables and figures refers to results obtained by the ESCD method) in the
tables agree very well with the exact solutions [13]. Table 2 includes results of a parametric study
of the effect of natural frequencies of systems on its time step size. It also provides responses of
various systems under narrow band random excitations with center frequency of 1.414rad/s.
From the table, one can observe that the time step size of the system indeed follows the relation
defined by Eq. (10). It is noted that the results computed by the ESCD method and exact solutions
have an excellent agreement. Results obtained by using the MCS are also included in Table 2. In
the MCS, every solution was obtained with 200 realizations each of which has 25,600 points. The
MCS results agree well with the exact solutions.

3.2. Interpolation of system input

In general, because the time step size is associated with natural frequency, the natural
frequencies of filter and system are generally different such that the time step size of the system is
different from that of the filter. In other words, an output from the filter cannot be directly used as
an input to the system since the time steps of the filter and the system are not equal. To resolve this
problem, one can adopt the interpolation or extrapolation to adjust the time step of the filter so
that it can be applied to the computation of the response of the system. In this investigation an
interpolation strategy is applied. It will be shown in the following subsections that such a strategy
is very efficient and accurate.

3.3. System under nonstationary random excitation

In this subsection, results for two cases were obtained. The first case is concerned with the effect
of various natural frequencies on the responses of the system. This system is subjected to a narrow
band random force with center frequency of 1rad/s. The results are presented in Figs. 2-4. The
second case deals a system in resonance at a frequency of 0.5rad/s. The results are presented in
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Fig. 2. Displacement response of system with w = 1.0rad/s, {; = 0.00985, w, = 0.5rad/s, {; = 0.0124; Simulation (o),
and SCD (H).
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Fig. 3. Resonant displacement response of system with @, = 1.0rad/s, {; = 0.00985, w, = 1.0rad/s, {; = 0.0124.
Simulation (o), and SCD (H).

Fig. 5. It may be appropriate to note that the MCS results in these figures and subsequent ones
show significant local fluctuations while those by the ESCD method indicate smooth behavior of
the response variance with time. The local fluctuations of the MCS results have to do with the fact
that a pseudo-random number generator has been employed and that 200 realizations of the
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Fig. 4. Displacement response of system with @y = 1.0rad/s, {; = 0.00985, s = 1.4rad/s, {; = 0.0124: MCS (), and
SCD ().
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Fig. 5. Resonant displacement response of system with wy = 0.5rad/s, {; = 0.00985, w, = 0.5rad/s, {; =0.0124:
Simulation (o), and SCD (H).

random responses were considered in the MCS. In other words, the local fluctuations are intrinsic
in the MCS and therefore cannot be avoided.

In the above results, the input to the system is a narrow band random excitation which is the
output of a filter excited by a modulated Gaussian white noise process. The input to the filter is

r=e(®w(r), (W 0)) =2nSy, e(t) =40 00 — 011 (14)
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in which Sy = 1.0 has been applied. In the MCS, again, every solution was obtained with 200
realizations, each of which has 25,600 points. It should be pointed out that in the MCS, the
computation time was about 40 min while that using the ESCD method was less than a second.
The computing machine used was a Silicon Graphics engineering workstation with 64 MB RAM
and 60 MHz single central processor. Figs. 3 and 5 include results of the two resonant cases with
frequencies of 1.0 and 0.5 rad/s, respectively. In these two cases the same bandwidth {, of narrow
band inputs and same damping ratios of the system were employed. Note that the amplitudes of
the responses are very different. Comparing Fig. 3 with the two corresponding nonresonant cases,
that is, Figs. 2 and 4, it is evident that their responses are very much different as one expects. It is
observed that the results obtained by the ESCD method and MCS are very much in agreement.

3.4. Effect of bandwidth of narrow band nonstationary random excitation

Computations for two examples were conducted for the comparison between responses of the
system to narrow band and wide band random excitations. The first example has a natural
frequency of 1.0 rad/s. In the second example the system has been chosen to have different natural
frequencies of 2.0, 3.0 and 4.0rad/s. Wide band input to the system is a modulated stationary
Gaussian white noise excitation defined by Eq. (14), whereas the narrow band input to the system
is given by

f=e®VI, I=2m ef)=40e"% —e 0, (15)

where I can be used to adjust the amplitude. By inspection of Egs. (14) and (15), one notices that
the modulating functions are identical. The purpose of these choices is to eliminate the effect of
amplitude difference between the modulated white noise and modulated narrow band inputs to
the filter and system. The time step sizes used are determined by Eq. (10). Two different center
frequencies are selected for each example. They are w; = 1.0rad/s for the first example and
wy = 3.0rad/s for the second example. Computed results of the first example are presented in
Figs. 6 and 7, while those of the second are shown in Fig. 8. Note that owing to the large
difference in amplitudes, Figs. 6 and 7 are not presented in a single figure. Comparing Figs. 6 and
7 one observes that not only the amplitudes are very much different but also the times at which the
peaks occur are changed. The peaks of resonant cases occur at much later times than that in the
nonresonant case. It is also observed that the differences between resonant responses of the system
under narrow band excitations and those under white noise excitation in the first example are
significantly larger than those in the second example. This indicates that the aforementioned
difference decreases with increasing natural frequency.

From the foregoing, one observes that the differences between the responses of the system
under narrow band and wide band random excitations are very significant. The conclusion to be
drawn at this stage is that correct representation of the excitation process is very important.

4. Responses of discretized beam structure

The discretized cantilever beam studied in Ref. [12] is investigated. It should be pointed out that
the results in Ref. [12] are concerned with wide band random excitations applied at the clamped
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Fig. 6. Effect of bandwidth on variance response for narrow band case with oy = 1.0rad/s, {; = 0.01, w, = 1.0rad/s,
{,=0.01; SCD (H).
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Fig. 7. Effect of bandwidth on variance response for modulated white noise case with ws = 1.0rad/s, {;, = 0.01;
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end. The focus in the present investigation is, however, on responses of the discretized beam
structure under narrow band random excitations applied at the free end. The ESCD method and
TCT in Section 2 are applied here. The obtained results by the ESCD method are compared with
those computed by the MCS.
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Fig. 9. Discretized cantilever beam structure.

4.1. Discretized beam structure

For illustration purpose the cantilever beam shown in Fig. 9 is approximated by two 2-node
beam elements. Every node has three dof, namely, axial displacement u, flexural displacement v
and rotation about z-axis 6. For completeness, the element matrices are given below. The
consistent element mass matrix is

r140 0 0 70 0 0 T
0 156 22¢ 0 54 —13¢
pA¢| 0 220 4 0 13¢ -3¢

4207 0 0 140 0 0o |

54 13¢ 0 156 —22¢

0 —13¢ =322 0 =220 4% ]

[m] (16)
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where p is the mass density, 4 the cross-sectional area, and ¢ the length of the element. The
consistent element stiffness matrix is given by

M a 0 0 —a 0 0 7
0 126 6th O —12b 6Cb
6th  40°b 0 —6tb 20%°b
K=1_, o 0 a 0 0o |’ 17)
0 —12b —6tb O 126 —60b
L0 6b 20 0 —60b  40%D |
in which a and b are defined as
o FA_ED
== =

with E being the Young’s modulus and 7, the second moment of area of the cross-section of the
beam.
The nodal displacement vector accompanying Eqs. (16) and (17) is

T
{q} = [ui, vi, 05, uiq1, Vi1, 0i41]

where 7 is an integer.
Based on the element consistent mass and stiffness matrices, [#2] and [k] the assembled mass and
stiffness matrices can be obtained

N+1 N+1

(M=) [M], [Kl=> K], (18)
e=1 e=1

where the subscript e denotes the element number, [M], and [K], have the same order as the

assembled mass matrix [M] and stiffness matrix [K], respectively. The nonzero elements in the

latter matrices are only those in rows and columns that correspond to element degrees of freedom.
For simplicity, the damping matrix is assumed to be proportional, defined as

[C1=[M]) 2[M'KY, (19)
p

where 4, are constants to be determined and p =0, 1,2, ... . The upper limit of the summation is
not defined as it varies from one system to another.

The governing matrix equation of motion in terms of the global-nodal displacement, velocity
and acceleration vectors is

[MI{Y}+[CIY} +[KI{Y) = {F}, (20)

where {F'} is the vector of consistent nodal forces due to the external random excitations and {Y}
the global nodal displacement vector. Clearly, Eq. (20) is similar in form to Eq. (2).
The excitation vector on the RHS of equation (20) may be defined as

{FYy=[0 —e()\/I---0I", (21a)
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where now e(¢) is a scalar deterministic modulating function which is given as
e(t) = E (e ™ —e ™) (21b)

in which o and o, are positive constants satisfying a; <oy, and E, is a constant used to normalize
e(?) such that max{e(t)} = 1.0.

With the definition of [C] in Eq. (19) the following algebraic equations can be written to
determine constants 4,:

2w = Iy, (22)
4

or in matrix notation

[lo 2q Ao - 1"=287"Y0 G G o],

o o - 2j-3 .
where Z is a square matrix with components Z; = w7, w; and (; are the ith natural frequency

and modal damping ratio, respectively. As many equations (22) must be included as there are
specified modal damping ratios. More detailed discussion on the damping matrix can be found in
Ref. [12,14]. It only suffices to state that the ESCD method does not require the modal or complex
modal analysis. The modal damping ratios are selected here because they are readily available in
Ref. [12]. In the present investigation, damping matrix of the discretized beam structure with
p =0, 11is adopted. The results obtained by the ESCD method and denoted as SCD are compared
with those evaluated by the MCS.

The beam structure has the following properties: density of the material p = 7860.0kg/m?,
Young’s modulus of elasticity E = 2.07 x 10'' N/m?, cross-sectional area 4 = 6.25 x 1074 m?,
moment of inertia of cross-section I, = 3.26 x 10~®m*, and length L = 1m.

The modulating function e(¢) is chosen as

e(t) = 9.4815(e+" — =01 (23)

and the duration of excitation as 7, = 0.30s. Note that the fundamental period, T = 21/, is
0.04819 s and therefore the duration of excitation chosen above is slightly more than 6 times the
fundamental period. The first five modal damping ratios of the beam structure are included in the
computation: {; = {, =0.05, {3 =0.1413, {4, = 0.4049, and (s = 0.4142. The two independent
coefficients of the damping matrix are: 4,, = 11.3379 and J; = 0.0001. For this problem there are
6 dof. The six natural frequencies of the discretized beam structure are: @; = 130.3777 rad/s,
wy = 823.5985rad/s, w; = 2785.5606rad/s, w4 = 8084.8891rad/s, ws = 8269.5425rad/s, and
we = Q = 28888.7357 rad/s.

It may be appropriate to note that since the formulation is based on linear theory, the following
condition should be satisfied:

5L

2
2
max{(Y7(0)} < <@> ;

where (Y%(t)) is the variance of displacement at the free end of the beam structure.
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4.2. Narrow band nonstationary random responses

A program of numerical tests was designed to examine the efficiency and accuracy of the ESCD
method. For illustration purpose, only a sdof filter is employed in the computation. The center
frequency of the filter is selected in such a way that the fundamental frequency of the discretized
beam is excited. The center frequency w, and damping ratio {; of the filter are 130.38 rad/s and

0.05 respectively. The sdof filter is excited by a modulated Gaussian white noise process. The latter
is given by

10) = e(Hw(r), (W (0)) =2m x 10'0,  e(r) = 9.4815(e™*" — =), (24)

The results by the ESCD method, in which At = 1.0 is the dimensionless time step after the
application of the TCT, are presented in Figs. 10 and 11. Results obtained by the MCS are also
included in the figures for comparison. Note that, for brevity, only a representative number of
variances of responses are presented. It may be appropriate to point out that for every case the
computation time required by the ESCD method is about 3.5min while that by the MCS is
approximately 5.2h. The computing machine used for the investigation is the Silicon Graphics
workstation briefly mentioned in the last section.

With reference to the figures presented in this subsection and the computation times quoted in

the foregoing, one may conclude that the ESCD method is very accurate and efficient compared
with the MCS.

4.3. Effect of bandwidth of excitation processes

The aim of the study in this subsection is to examine the effect of bandwidth of the excitation
process from the single dof filter on the responses of the discretized beam structure. The filter

24 : : :
& 18}
5
%
& 12t
g o6t fr
3 o ‘ .

0.0 0.1 0.2 0.3

Time, s

Fig. 10. Resonant displacement response of discretized beam under narrow band random excitation with w, =
130.0rad/s, {; = 0.05; MCS (e), and SCD (x).
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Fig. 11. Resonant rotation response of discretized beam under narrow band random excitation with w; = 130.0rad/s,
{; = 0.05. MCS (e), and SCD (x).

16

Variance at tip (x10°* m?)

0.0 0.1 0.2 0.3
Time, s

Fig. 12. Effect of bandwidth on displacement responses of discretized cantilever beam with wy = 130.0rad/s, {; = 0.05
(0), and {y = 0.1 (e).

characteristics mentioned in the last subsection are applied here. The modulating function e(¢) of
the narrow band nonstationary random excitation given by Eq. (21a) is the same as that defined in
Eq. (23). However, (I5)"/? in Eq. (21a) is such that Iy = 27 x 10%,

Computed results are presented in Figs. 12 and 13. With reference to the figures, one observes
that the system response increases with decreasing band width of the random excitation process.
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Fig. 13. Effect of bandwidth on rotation responses of discretized cantilever beam with w, = 130.0rad/s, {; = 0.05 (O0),
and {y = 0.1 (e).

5. Flow-induced vibration of a uniform pipe

Aside from further demonstration of application of the ESCD for a structure discretized by the
FEM, the flow-induced vibration of a uniform pipe containing a moving medium [15-17] is a
good example of a discretized system with nonproportional damping. The damping matrix in such

a system is skew symmetric. The computed results by using the ESCD method are compared with
those applying the MCS.

5.1. Water flowing in a straight pipe

The particular example considered is a straight uniform pipe containing flowing water. It is pin-
supported at both ends [18]. For illustration purpose, the structure shown in Fig. 14 is
approximated by two 2-node beam bending elements. It may be appropriate to mention that the
coarse finite element mesh used here is mainly for illustration rather than attempting to present an
accurate practical solution to the problem. Each node of the element has 2 dof namely transversal
deflection and rotation. The motion in the system shown in Fig. 14 is such that the consistent
element mass, damping and stiffness matrices of a pipe containing running fluid are

156 220 54 —13¢
(m,+m) | 22 47 13¢ =3¢
~ 420 54 13¢ 156 220 |

—13¢ =302 —22¢ 4

[m] (25)
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Fig. 14. A fluid-conveying pipe with pinned ends.
0 66 30 —6¢
me | =60 0 66 =
it , 26
=301 30 _6¢ 0 6 (26)
66 2 —6 0
12 66 —12 6¢
EI, | 6 40> —6t 20*
k,] = —= , 27
(o] £l =12 -6t 12 —6¢ 27)
60 200 —60 4f?
36 3¢ =36 3¢
2 407 3¢ =2
m/’l?
kil = — , 28
K1=Z07 | 36 —3¢ 36 —3¢ (28)
3¢ —* =3¢ 407

where m, is the mass per unit length of the pipe, my is the mass per unit length of the fluid, E is
Young’s modulus of the pipe material, I, is the moment of inertia of the pipe cross-section area, £
is the length of finite element, and v is the velocity of the fluid inside the pipe.

Based on consistent element matrices [m], [¢] and [k] = [k,] — [k/], the assembled mass,
damping, and stiffness matrices can be obtained as

N+l N+1 N+1
[M]=)_[M],. [Cl=) [Cl. [Kl=)> I[K]. (29)
e=1 e=1 e=1

where the subscript e denotes the element number; [M],, [C], and [K], have the same order as the
assembled mass matrix [M], damping matrix [C], and stiffness matrix [K], respectively. The
nonzero elements in the latter matrices are only those in rows and columns that correspond to
element degrees of freedom. After assembling and applying the boundary conditions, the resultant
size of the mass, damping and stiffness matrices is four by four.

The structure is subjected to a concentrated narrow band nonstationary random excitation at
its mid-span. The governing matrix equation of motion in terms of the global displacement,
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velocity and acceleration vectors is similar to Eq. (20). The excitation for this particular problem is
defined by Eq. (21).

5.2. Narrow band nonstationary random responses

A number of numerical tests was conducted to examine the efficiency and accuracy of the
ESCD method for the response statistics of the flow-induced vibration problem. The material
properties of the pipe are: Young’s modulus £ = 68.5 GPa, pipe outer radius r, = 26.0 mm, pipe
thickness # = 3.5mm, pipe total length L = 2.8m, m; = 1.59kg/m, m, = 1.49kg/m, v = 38 m/s.
The corresponding undamped frequencies are o; = 68.5rad/s, w; =3259rad/s, w;=
828.3rad/s and w4 = 1514.7rad/s. The center frequency of the filter is selected in such a way
that it mainly excites the fundamental mode of the pipe. The center frequency w; and damping

ratio {y of the filter are 89.0rad/s and 0.05, respectively. The sdof filter is excited by a modulated
Gaussian white noise process. The latter is given by

P(t) = e(t)w(t), (WH0)) =27 x 10°, e(f) = 9.4815(e+" — &™), (30)

The results of variances of responses by the ESCD method, in which At = 1.0, are presented in
Figs. 15-17 in which they are denoted as SCD. Results obtained by the MCS are also included in
these figures for comparison. In the MCS the number of realizations applied was 150. It may be
worth pointing out that a number of resonant cases were tested and the responses were
unbounded. These are associated with the so-called flutter instability which is not the objective of
the current investigation and therefore are not pursued further here. Note that the magnitudes of
nonresonant variances of displacement and rotation or angular displacement responses in Figs.
15-17 are reasonable in that they are within the linear ranges.

12 T T T T T T
10 1
o
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o 8 7
(=)
“ ho)
o 2 6 1
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HER
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53
& 2 ]
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& ]
_2 1 1 1 1 ] 1
0 0.05 01 0.15 0.2 0.25 0.3 0.35
Time, s

Fig. 15. Variances of rotation responses at left end with oy = 89.0rad/s, {; = 0.05. Simulation (e), and SCD (+).



Z. Chen, C.W.S. To | Journal of Sound and Vibration 287 (2005) 433458 453

12 T T T

10 +

i Disp]agement
(m®)

Variances of
Responses at Midpoint (10'3)

Rotation (rad?

_2 1 1 1 Il 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Time, s

Fig. 16. Variances of responses at midpoint of pipe with oy =89.0rad/s, {; = 0.05. Simulation (e), and SCD (+).
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Fig. 17. Variances of rotations at right end of pipe with w, = 89.0rad/s, {; = 0.05. Simulation (e), and SCD (+).

It may be of interest to note that for every case the computation time required by the ESCD
method is about 1.0s while that by the MCS is approximately 8 min on a dual pentium II 266
MHz machine.

With reference to the figures presented in this subsection, one could conclude that the ESCD
method is applicable to nonproportional damping problems and that the ESCD method is very
efficient and accurate even for a system with only 4 dof. This implies that for practical systems

that have a large number of dof, computation time saved by the ESCD method can be very
significant.
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5.3. Effect of bandwidth of excitation processes

The purpose of the study included in this subsection is to examine the effect of bandwidth of the
excitation process from the single dof filter on the responses of the pipe. The filter characteristics
mentioned in the last subsection is employed here. The modulating function e(¢) of the narrow
band nonstationary random excitation given in Eq. (21a) is the same as that defined in Eq. (23),
while (I;)"/? in Eq. (21a) is such that I; = 21 x 10,

Computed results are presented in the figures. Two pipes with different properties were adopted.
The first one is made of aluminum which was used in the previous subsection. The center frequency of
filter applied is 37.6rad/s and the results are presented in Figs. 18-20. The second example is a steel
pipe whose properties are as follow: Young’s modulus £ = 200 GPa, pipe outer radius r, = 26.0 mm,
pipe thickness 7 = 3.5mm, pipe total length L =2.8m, ms = 1.59kg/m, m, = 4.19kg/m, v =
38m/s. The corresponding undamped frequencies are w; = 90.6rad/s, w, = 410.2rad/s, w3 =
1035rad/s and w4 = 1888.9rad/s. A narrow band random excitation with center frequency of
80.0 rad/s was applied to the pipe at the midpoint. Figs. 21-23 contain the responses of the pipe.

With reference to the figures, one observes that the system responses increase with decreasing
bandwidth of the random excitation process, which are consistent with the results presented in
previous sections. Before closing this subsection, it should be noted that even for the coarse mesh
finite element model of flow-induced vibration of pipe containing a moving medium and subjected
to a narrow band nonstationary random excitation no similar work can be found in the literature.

6. Concluding remarks

The new feature in the presently proposed ESCD method is its efficient capability of dealing
with narrow band stationary and nonstationary random excitations applied to the structures

5 T T T

Variances of
Rotations at 1st End (10'3rad2)

-1 L L L L 1
0 0.02 0.04 0.06 0.08 0.1 0.12

Time, s

Fig. 18. Effect of bandwidth on variances of rotations at left end with w; = 68.5rad/s, w; = 89.0rad/s; {y = 0.025 (V),
{; =0.05(0), and {; = 0.1 (e).
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Fig. 19. Effect of bandwidth on variances of responses at midpoint of beam with w; = 68.5rad/s, &y = 89.0rad/s;
{y =0.025 (V), {; =0.05 (O), and {y = 0.1 (e).
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Fig. 20. Effect of bandwidth on variances of rotation responses at right end with w; = 68.5rad/s, w; = 89.0rad/s;
{; =0.025 (V), {; =0.05 (O), and {y = 0.1 (e).

approximated by the FEM. It also provides a means of controlling the center frequencies and
band widths of narrow band stationary and nonstationary random excitations.

By applying different envelope functions es(s), constant 7, the natural frequencies of the filter
and the ratios of damping to mass, a variety of different shapes, spectral densities, center
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Fig. 21. Effect of bandwidth on variances of rotation responses at left end with w; = 90.6rad/s, &y = 80.0rad/s;
=001 (V), { = 0.025 (O), and {; = 0.05 (s).
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Fig. 22. Effect of bandwidth on variances of responses at midpoint with w; = 90.6rad/s, oy = 80.0rad/s; {, = 0.01
(V), {y = 0.025 (), and {; = 0.05 (e).

frequencies and band widths of the narrow band random processes from the filter can be
obtained. This is a unique feature which the well established MCS cannot provide.

The proposed ESCD method is suitable for large-scale random response analysis of
complicated structures as it applies the FEM. Furthermore, it does not require the normal mode
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Fig. 23. Effect of bandwidth on variances of rotation responses at right end with w; = 90.6rad/s, &, = 80.0rad/s;
{r =0.01 (V), {f =0.025 (), and {y = 0.05 (e).

or complex normal mode analysis or direct numerical integration algorithms such as the fourth-
order Runge—Kutta scheme.

Computed results of several examples were obtained. It is believed that for the first time
responses of a uniform pipe containing a moving medium and excited by a narrow band
nonstationary random disturbance has been evaluated by applying the FEM. Computed results
show that: (1) differences between the responses of discretized systems under narrow band and
wide band random excitations can be very significant and therefore a correct representation of the
excitation processes is of paramount important, (2) the proposed method is very accurate and
efficient compared with those obtained by using the MCS, and (3) because of its recursive nature
and the fact that it is based on the FEM it can be generalized to deal with the nonlinear random
response of discretized systems. Such a generalization and its application to nonlinear random
response analysis will be presented in a companion paper [9].
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